Sciweavers

397 search results - page 23 / 80
» Reinforcement Learning with Hierarchies of Machines
Sort
View
ICML
2007
IEEE
15 years 10 months ago
Hierarchical Gaussian process latent variable models
The Gaussian process latent variable model (GP-LVM) is a powerful approach for probabilistic modelling of high dimensional data through dimensional reduction. In this paper we ext...
Neil D. Lawrence, Andrew J. Moore
ICML
2007
IEEE
15 years 10 months ago
Tracking value function dynamics to improve reinforcement learning with piecewise linear function approximation
Reinforcement learning algorithms can become unstable when combined with linear function approximation. Algorithms that minimize the mean-square Bellman error are guaranteed to co...
Chee Wee Phua, Robert Fitch
ICML
2001
IEEE
15 years 10 months ago
Continuous-Time Hierarchical Reinforcement Learning
Hierarchical reinforcement learning (RL) is a general framework which studies how to exploit the structure of actions and tasks to accelerate policy learning in large domains. Pri...
Mohammad Ghavamzadeh, Sridhar Mahadevan
ICML
2000
IEEE
15 years 2 months ago
A Bayesian Framework for Reinforcement Learning
The reinforcement learning problem can be decomposed into two parallel types of inference: (i) estimating the parameters of a model for the underlying process; (ii) determining be...
Malcolm J. A. Strens
ICML
2005
IEEE
15 years 10 months ago
Reinforcement learning with Gaussian processes
Gaussian Process Temporal Difference (GPTD) learning offers a Bayesian solution to the policy evaluation problem of reinforcement learning. In this paper we extend the GPTD framew...
Yaakov Engel, Shie Mannor, Ron Meir