Sciweavers

397 search results - page 27 / 80
» Reinforcement Learning with Hierarchies of Machines
Sort
View
ICML
1994
IEEE
15 years 1 months ago
Markov Games as a Framework for Multi-Agent Reinforcement Learning
In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function....
Michael L. Littman
ML
2002
ACM
121views Machine Learning» more  ML 2002»
14 years 9 months ago
Near-Optimal Reinforcement Learning in Polynomial Time
We present new algorithms for reinforcement learning, and prove that they have polynomial bounds on the resources required to achieve near-optimal return in general Markov decisio...
Michael J. Kearns, Satinder P. Singh
AIIDE
2006
14 years 11 months ago
The Self Organization of Context for Learning in MultiAgent Games
Reinforcement learning is an effective machine learning paradigm in domains represented by compact and discrete state-action spaces. In high-dimensional and continuous domains, ti...
Christopher D. White, Dave Brogan
ICML
2005
IEEE
15 years 10 months ago
Relating reinforcement learning performance to classification performance
We prove a quantitative connection between the expected sum of rewards of a policy and binary classification performance on created subproblems. This connection holds without any ...
John Langford, Bianca Zadrozny
93
Voted
ICML
2000
IEEE
15 years 10 months ago
Convergence Problems of General-Sum Multiagent Reinforcement Learning
Stochastic games are a generalization of MDPs to multiple agents, and can be used as a framework for investigating multiagent learning. Hu and Wellman (1998) recently proposed a m...
Michael H. Bowling