Sciweavers

1235 search results - page 77 / 247
» Reinforcement learning in a nutshell
Sort
View
ML
2002
ACM
121views Machine Learning» more  ML 2002»
14 years 10 months ago
Near-Optimal Reinforcement Learning in Polynomial Time
We present new algorithms for reinforcement learning, and prove that they have polynomial bounds on the resources required to achieve near-optimal return in general Markov decisio...
Michael J. Kearns, Satinder P. Singh
ICONIP
2009
14 years 8 months ago
Tracking in Reinforcement Learning
Reinforcement learning induces non-stationarity at several levels. Adaptation to non-stationary environments is of course a desired feature of a fair RL algorithm. Yet, even if the...
Matthieu Geist, Olivier Pietquin, Gabriel Fricout
CORR
2012
Springer
196views Education» more  CORR 2012»
13 years 6 months ago
PAC-Bayesian Policy Evaluation for Reinforcement Learning
Bayesian priors offer a compact yet general means of incorporating domain knowledge into many learning tasks. The correctness of the Bayesian analysis and inference, however, lar...
Mahdi Milani Fard, Joelle Pineau, Csaba Szepesv&aa...
AGENTS
2001
Springer
15 years 3 months ago
Hierarchical multi-agent reinforcement learning
In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multi-agent tasks. We introduce a hierarchical multi-a...
Rajbala Makar, Sridhar Mahadevan, Mohammad Ghavamz...
AGENTS
1999
Springer
15 years 2 months ago
Team-Partitioned, Opaque-Transition Reinforcement Learning
In this paper, we present a novel multi-agent learning paradigm called team-partitioned, opaque-transition reinforcement learning (TPOT-RL). TPOT-RL introduces the concept of usin...
Peter Stone, Manuela M. Veloso