Sciweavers

1233 search results - page 47 / 247
» Reinforcement learning
Sort
View
GECCO
2005
Springer
155views Optimization» more  GECCO 2005»
15 years 5 months ago
Co-evolving recurrent neurons learn deep memory POMDPs
Recurrent neural networks are theoretically capable of learning complex temporal sequences, but training them through gradient-descent is too slow and unstable for practical use i...
Faustino J. Gomez, Jürgen Schmidhuber
ATAL
2008
Springer
15 years 1 months ago
Sequential decision making in repeated coalition formation under uncertainty
The problem of coalition formation when agents are uncertain about the types or capabilities of their potential partners is a critical one. In [3] a Bayesian reinforcement learnin...
Georgios Chalkiadakis, Craig Boutilier
GECCO
2000
Springer
143views Optimization» more  GECCO 2000»
15 years 3 months ago
A Genetic Algorithm for Automatically Designing Modular Reinforcement Learning Agents
Reinforcement learning (RL) is one of the machine learning techniques and has been received much attention as a new self-adaptive controller for various systems. The RL agent auto...
Isao Ono, Tetsuo Nijo, Norihiko Ono
ICRA
2009
IEEE
139views Robotics» more  ICRA 2009»
15 years 6 months ago
Transfer of knowledge for a climbing Virtual Human: A reinforcement learning approach
— In the reinforcement learning literature, transfer is the capability to reuse on a new problem what has been learnt from previous experiences on similar problems. Adapting tran...
Benoit Libeau, Alain Micaelli, Olivier Sigaud
ICCBR
2005
Springer
15 years 5 months ago
CBR for State Value Function Approximation in Reinforcement Learning
CBR is one of the techniques that can be applied to the task of approximating a function over high-dimensional, continuous spaces. In Reinforcement Learning systems a learning agen...
Thomas Gabel, Martin A. Riedmiller