Sciweavers

1233 search results - page 67 / 247
» Reinforcement learning
Sort
View
NIPS
1993
15 years 2 months ago
Robust Reinforcement Learning in Motion Planning
While exploring to nd better solutions, an agent performing online reinforcement learning (RL) can perform worse than is acceptable. In some cases, exploration might have unsafe, ...
Satinder P. Singh, Andrew G. Barto, Roderic A. Gru...
136
Voted
AI
1999
Springer
15 years 12 days ago
Cooperative Behavior Acquisition for Mobile Robots in Dynamically Changing Real Worlds Via Vision-Based Reinforcement Learning a
In this paper, we first discuss the meaning of physical embodiment and the complexity of the environment in the context of multi-agent learning. We then propose a vision-based rei...
Minoru Asada, Eiji Uchibe, Koh Hosoda
105
Voted
VLSID
2005
IEEE
105views VLSI» more  VLSID 2005»
15 years 6 months ago
Placement and Routing for 3D-FPGAs Using Reinforcement Learning and Support Vector Machines
The primary advantage of using 3D-FPGA over 2D-FPGA is that the vertical stacking of active layers reduce the Manhattan distance between the components in 3D-FPGA than when placed...
R. Manimegalai, E. Siva Soumya, V. Muralidharan, B...
75
Voted
PRICAI
1999
Springer
15 years 5 months ago
Rationality of Reward Sharing in Multi-agent Reinforcement Learning
Abstract. In multi-agent reinforcement learning systems, it is important to share a reward among all agents. We focus on the Rationality Theorem of Profit Sharing [5] and analyze ...
Kazuteru Miyazaki, Shigenobu Kobayashi
95
Voted
NIPS
1994
15 years 2 months ago
Reinforcement Learning with Soft State Aggregation
It is widely accepted that the use of more compact representations than lookup tables is crucial to scaling reinforcement learning (RL) algorithms to real-world problems. Unfortun...
Satinder P. Singh, Tommi Jaakkola, Michael I. Jord...