Recently, boosting is used widely in object detection applications because of its impressive performance in both speed and accuracy. However, learning weak classifiers which is on...
Eigenvalue problems are rampant in machine learning and statistics and appear in the context of classification, dimensionality reduction, etc. In this paper, we consider a cardina...
Bharath K. Sriperumbudur, David A. Torres, Gert R....
In this paper, we review the paradigm of inductive process modeling, which uses background knowledge about possible component processes to construct quantitative models of dynamic...
Will Bridewell, Narges Bani Asadi, Pat Langley, Lj...
Logistic Regression (LR) has been widely used in statistics for many years, and has received extensive study in machine learning community recently due to its close relations to S...
Jian Zhang, Rong Jin, Yiming Yang, Alexander G. Ha...
Stochastic topological models, and hidden Markov models in particular, are a useful tool for robotic navigation and planning. In previous work we have shown how weak odometric dat...