This paper introduces the RL-TOPs architecture for robot learning, a hybrid system combining teleo-reactive planning and reinforcement learning techniques. The aim of this system ...
Inverse Reinforcement Learning (IRL) is the problem of learning the reward function underlying a Markov Decision Process given the dynamics of the system and the behaviour of an e...
Bayesian inference is an appealing approach for leveraging prior knowledge in reinforcement learning (RL). In this paper we describe an algorithm for discovering different classes...
As learning agents move from research labs to the real world, it is increasingly important that human users, including those without programming skills, be able to teach agents de...
This paper describes the use of machine learning to improve the performance of natural language question answering systems. We present a model for improving story comprehension th...