Abstraction in Reinforcement Learning via Clustering Shie Mannor shie@mit.edu Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA ...
An open problem in reinforcement learning is discovering hierarchical structure. HEXQ, an algorithm which automatically attempts to decompose and solve a model-free factored MDP h...
In this article, I will consider Markov Decision Processes with two criteria, each defined as the expected value of an infinite horizon cumulative return. The second criterion is e...
As computational learning agents move into domains that incur real costs (e.g., autonomous driving or financial investment), it will be necessary to learn good policies without n...
Learning on real robots in an real, unaltered environment provides an extremely challenging problem. Many of the simplifying assumptions made in other areas of learning cannot be ...