Sciweavers

210 search results - page 16 / 42
» Relevance Vector Machine Analysis of Functional Neuroimages
Sort
View
NIPS
2008
14 years 11 months ago
Covariance Estimation for High Dimensional Data Vectors Using the Sparse Matrix Transform
Covariance estimation for high dimensional vectors is a classically difficult problem in statistical analysis and machine learning. In this paper, we propose a maximum likelihood ...
Guangzhi Cao, Charles A. Bouman
ICML
2007
IEEE
15 years 10 months ago
On one method of non-diagonal regularization in sparse Bayesian learning
In the paper we propose a new type of regularization procedure for training sparse Bayesian methods for classification. Transforming Hessian matrix of log-likelihood function to d...
Dmitry Kropotov, Dmitry Vetrov
BMCBI
2006
216views more  BMCBI 2006»
14 years 9 months ago
Machine learning approaches to supporting the identification of photoreceptor-enriched genes based on expression data
Background: Retinal photoreceptors are highly specialised cells, which detect light and are central to mammalian vision. Many retinal diseases occur as a result of inherited dysfu...
Haiying Wang, Huiru Zheng, David Simpson, Francisc...
142
Voted

Book
778views
16 years 7 months ago
Gaussian Processes for Machine Learning
"Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning...
Carl Edward Rasmussen and Christopher K. I. Willia...
ECML
2006
Springer
15 years 1 months ago
Evaluating Feature Selection for SVMs in High Dimensions
We perform a systematic evaluation of feature selection (FS) methods for support vector machines (SVMs) using simulated high-dimensional data (up to 5000 dimensions). Several findi...
Roland Nilsson, José M. Peña, Johan ...