Sciweavers

536 search results - page 18 / 108
» Residual Algorithms: Reinforcement Learning with Function Ap...
Sort
View
PKDD
2009
Springer
181views Data Mining» more  PKDD 2009»
15 years 6 months ago
Active Learning for Reward Estimation in Inverse Reinforcement Learning
Abstract. Inverse reinforcement learning addresses the general problem of recovering a reward function from samples of a policy provided by an expert/demonstrator. In this paper, w...
Manuel Lopes, Francisco S. Melo, Luis Montesano
ATAL
2010
Springer
15 years 23 days ago
Basis function construction for hierarchical reinforcement learning
This paper introduces an approach to automatic basis function construction for Hierarchical Reinforcement Learning (HRL) tasks. We describe some considerations that arise when con...
Sarah Osentoski, Sridhar Mahadevan
ECAI
2010
Springer
15 years 23 days ago
Case-Based Multiagent Reinforcement Learning: Cases as Heuristics for Selection of Actions
This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Multiagent Reinforcement Learning algorithms, combining Case-Based Reasoning...
Reinaldo A. C. Bianchi, Ramon López de M&aa...
112
Voted
ICML
1998
IEEE
16 years 14 days ago
Value Function Based Production Scheduling
Production scheduling, the problem of sequentially con guring a factory to meet forecasted demands, is a critical problem throughout the manufacturing industry. The requirement of...
Jeff G. Schneider, Justin A. Boyan, Andrew W. Moor...
COLT
2000
Springer
15 years 4 months ago
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning
We model reinforcement learning as the problem of learning to control a Partially Observable Markov Decision Process (  ¢¡¤£¦¥§  ), and focus on gradient ascent approache...
Peter L. Bartlett, Jonathan Baxter