Sciweavers

536 search results - page 19 / 108
» Residual Algorithms: Reinforcement Learning with Function Ap...
Sort
View
FUZZIEEE
2007
IEEE
15 years 3 months ago
Fuzzy Approximation for Convergent Model-Based Reinforcement Learning
— Reinforcement learning (RL) is a learning control paradigm that provides well-understood algorithms with good convergence and consistency properties. Unfortunately, these algor...
Lucian Busoniu, Damien Ernst, Bart De Schutter, Ro...
ATAL
2008
Springer
14 years 11 months ago
Transfer of task representation in reinforcement learning using policy-based proto-value functions
Reinforcement Learning research is traditionally devoted to solve single-task problems. Therefore, anytime a new task is faced, learning must be restarted from scratch. Recently, ...
Eliseo Ferrante, Alessandro Lazaric, Marcello Rest...
112
Voted
IJCAI
2007
14 years 11 months ago
Heuristic Selection of Actions in Multiagent Reinforcement Learning
This work presents a new algorithm, called Heuristically Accelerated Minimax-Q (HAMMQ), that allows the use of heuristics to speed up the wellknown Multiagent Reinforcement Learni...
Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, Anna...
ECML
2004
Springer
15 years 2 months ago
Experiments in Value Function Approximation with Sparse Support Vector Regression
Abstract. We present first experiments using Support Vector Regression as function approximator for an on-line, sarsa-like reinforcement learner. To overcome the batch nature of S...
Tobias Jung, Thomas Uthmann
AAMAS
2007
Springer
15 years 3 months ago
Continuous-State Reinforcement Learning with Fuzzy Approximation
Abstract. Reinforcement learning (RL) is a widely used learning paradigm for adaptive agents. There exist several convergent and consistent RL algorithms which have been intensivel...
Lucian Busoniu, Damien Ernst, Bart De Schutter, Ro...