Sciweavers

148 search results - page 14 / 30
» Riemannian Manifold Learning for Nonlinear Dimensionality Re...
Sort
View
IJCAI
2003
14 years 11 months ago
Continuous nonlinear dimensionality reduction by kernel Eigenmaps
We equate nonlinear dimensionality reduction (NLDR) to graph embedding with side information about the vertices, and derive a solution to either problem in the form of a kernel-ba...
Matthew Brand
112
Voted
MICCAI
2007
Springer
15 years 10 months ago
Active-Contour-Based Image Segmentation Using Machine Learning Techniques
Abstract. We introduce a non-linear shape prior for the deformable model framework that we learn from a set of shape samples using recent manifold learning techniques. We model a c...
Patrick Etyngier, Florent Ségonne, Renaud K...
ICML
2007
IEEE
15 years 10 months ago
Map building without localization by dimensionality reduction techniques
This paper proposes a new map building framework for mobile robot named Localization-Free Mapping by Dimensionality Reduction (LFMDR). In this framework, the robot map building is...
Takehisa Yairi
CVPR
2007
IEEE
15 years 11 months ago
The Hierarchical Isometric Self-Organizing Map for Manifold Representation
We present an algorithm, Hierarchical ISOmetric SelfOrganizing Map (H-ISOSOM), for a concise, organized manifold representation of complex, non-linear, large scale, high-dimension...
Haiying Guan, Matthew Turk
68
Voted
ICML
2008
IEEE
15 years 10 months ago
Manifold alignment using Procrustes analysis
In this paper we introduce a novel approach to manifold alignment, based on Procrustes analysis. Our approach differs from "semisupervised alignment" in that it results ...
Chang Wang, Sridhar Mahadevan