Sciweavers

208 search results - page 1 / 42
» Robust Kernel Principal Component Analysis
Sort
View
NIPS
2008
13 years 10 months ago
Robust Kernel Principal Component Analysis
Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to highe...
Minh Hoai Nguyen, Fernando De la Torre
ECCV
2004
Springer
14 years 11 months ago
Multiple View Feature Descriptors from Image Sequences via Kernel Principal Component Analysis
Abstract. We present a method for learning feature descriptors using multiple images, motivated by the problems of mobile robot navigation and localization. The technique uses the ...
Jason Meltzer, Ming-Hsuan Yang, Rakesh Gupta, Stef...
WACV
2008
IEEE
14 years 3 months ago
Object Categorization Based on Kernel Principal Component Analysis of Visual Words
In recent years, many researchers are studying object categorization problem. It is reported that bag of keypoints approach which is based on local features without topological in...
Kazuhiro Hotta
ICDM
2006
IEEE
225views Data Mining» more  ICDM 2006»
14 years 3 months ago
Adaptive Kernel Principal Component Analysis with Unsupervised Learning of Kernels
Choosing an appropriate kernel is one of the key problems in kernel-based methods. Most existing kernel selection methods require that the class labels of the training examples ar...
Daoqiang Zhang, Zhi-Hua Zhou, Songcan Chen
CSDA
2010
139views more  CSDA 2010»
13 years 9 months ago
Detecting influential observations in Kernel PCA
Kernel Principal Component Analysis extends linear PCA from a Euclidean space to any reproducing kernel Hilbert space. Robustness issues for Kernel PCA are studied. The sensitivit...
Michiel Debruyne, Mia Hubert, Johan Van Horebeek