Sciweavers

942 search results - page 32 / 189
» Robust feature induction for support vector machines
Sort
View
JMLR
2006
105views more  JMLR 2006»
14 years 9 months ago
Parallel Software for Training Large Scale Support Vector Machines on Multiprocessor Systems
Parallel software for solving the quadratic program arising in training support vector machines for classification problems is introduced. The software implements an iterative dec...
Luca Zanni, Thomas Serafini, Gaetano Zanghirati
CGF
2005
252views more  CGF 2005»
14 years 9 months ago
Support Vector Machines for 3D Shape Processing
We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which...
Florian Steinke, Bernhard Schölkopf, Volker B...
COLT
1999
Springer
15 years 2 months ago
Covering Numbers for Support Vector Machines
—Support vector (SV) machines are linear classifiers that use the maximum margin hyperplane in a feature space defined by a kernel function. Until recently, the only bounds on th...
Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Ro...
GECCO
2005
Springer
195views Optimization» more  GECCO 2005»
15 years 3 months ago
Evolutionary strategies for multi-scale radial basis function kernels in support vector machines
In support vector machines (SVM), the kernel functions which compute dot product in feature space significantly affect the performance of classifiers. Each kernel function is suit...
Tanasanee Phienthrakul, Boonserm Kijsirikul
85
Voted
ICML
2006
IEEE
15 years 10 months ago
The support vector decomposition machine
In machine learning problems with tens of thousands of features and only dozens or hundreds of independent training examples, dimensionality reduction is essential for good learni...
Francisco Pereira, Geoffrey J. Gordon