Background: Cluster analysis is an important technique for the exploratory analysis of biological data. Such data is often high-dimensional, inherently noisy and contains outliers...
Benjamin Georgi, Ivan Gesteira Costa, Alexander Sc...
Background: Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson corre...
Jianchao Yao, Chunqi Chang, Mari L. Salmi, Yeung S...
Background: The most common method of identifying groups of functionally related genes in microarray data is to apply a clustering algorithm. However, it is impossible to determin...
Matthew A. Hibbs, Nathaniel C. Dirksen, Kai Li, Ol...
In this paper, we propose a new image clustering algorithm, referred to as Clustering using Local Discriminant Models and Global Integration (LDMGI). To deal with the data points s...
Yi Yang, Dong Xu, Feiping Nie, Shuicheng Yan, Yuet...
—Vector field visualization techniques have evolved very rapidly over the last two decades, however, visualizing vector fields on complex boundary surfaces from computational ...
Zhenmin Peng, Edward Grundy, Robert S. Laramee, Gu...