Compressive sensing aims to recover a sparse or compressible signal from a small set of projections onto random vectors; conventional solutions involve linear programming or greed...
Marco F. Duarte, Michael B. Wakin, Richard G. Bara...
In this paper, we derive concentration of measure inequalities for compressive Toeplitz matrices (having fewer rows than columns) with entries drawn from an independent and identic...
Borhan Molazem Sanandaji, Tyrone L. Vincent, Micha...
Abstract-- Recovering or estimating the initial state of a highdimensional system can require a potentially large number of measurements. In this paper, we explain how this burden ...
Michael B. Wakin, Borhan Molazem Sanandaji, Tyrone...
The joint-sparse recovery problem aims to recover, from sets of compressed measurements, unknown sparse matrices with nonzero entries restricted to a subset of rows. This is an ex...
We consider efficient methods for the recovery of block-sparse signals--i.e., sparse signals that have nonzero entries occurring in clusters--from an underdetermined system of line...