Abstract— In this paper, we consider a class of continuoustime, continuous-space stochastic optimal control problems. Building upon recent advances in Markov chain approximation ...
: Partially-observable Markov decision processes provide a very general model for decision-theoretic planning problems, allowing the trade-offs between various courses of actions t...
The Partially Observable Markov Decision Process (POMDP) model is explored for high level decision making for Unmanned Air Vehicles (UAVs). The type of UAV modeled is a flying mun...
We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs are ...
Josep M. Porta, Nikos A. Vlassis, Matthijs T. J. S...
Partially observable Markov decision processes (POMDPs) have been
successfully applied to various robot motion planning tasks under uncertainty.
However, most existing POMDP algo...
Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo