Sciweavers

657 search results - page 33 / 132
» Scaling-Up Support Vector Machines Using Boosting Algorithm
Sort
View
ICIC
2005
Springer
15 years 7 months ago
Methods of Decreasing the Number of Support Vectors via k-Mean Clustering
This paper proposes two methods which take advantage of k -mean clustering algorithm to decrease the number of support vectors (SVs) for the training of support vector machine (SVM...
Xiao-Lei Xia, Michael R. Lyu, Tat-Ming Lok, Guang-...
IWCLS
2007
Springer
15 years 8 months ago
Evolving Fuzzy Rules with UCS: Preliminary Results
This paper presents Fuzzy-UCS, a Michigan-style Learning Fuzzy-Classifier System designed for supervised learning tasks. FuzzyUCS combines the generalization capabilities of UCS w...
Albert Orriols-Puig, Jorge Casillas, Ester Bernad&...
88
Voted
CVPR
2008
IEEE
16 years 4 months ago
Enforcing non-positive weights for stable support vector tracking
In this paper we demonstrate that the support vector tracking (SVT) framework first proposed by Avidan is equivalent to the canonical Lucas-Kanade (LK) algorithm with a weighted E...
Simon Lucey
NIPS
2000
15 years 3 months ago
A Support Vector Method for Clustering
We present a novel method for clustering using the support vector machine approach. Data points are mapped to a high dimensional feature space, where support vectors are used to d...
Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladi...
106
Voted
ECML
2004
Springer
15 years 7 months ago
Improving Random Forests
Random forests are one of the most successful ensemble methods which exhibits performance on the level of boosting and support vector machines. The method is fast, robust to noise,...
Marko Robnik-Sikonja