In this paper we introduce a novel image descriptor enabling accurate object categorization even with linear models. Akin to the popular attribute descriptors, our feature vector ...
Visual learning is expected to be a continuous and robust process, which treats input images and pixels selectively. In this paper we present a method for subspace learning, which...
We describe an algorithm for automatically learning discriminative components of objects with SVM classifiers. It is based on growing image parts by minimizing theoretical bounds ...
Bernd Heisele, Thomas Serre, Massimiliano Pontil, ...
Abstract. In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an E...
Boyan Bonev, Francisco Escolano, Miguel Angel Loza...
There has been much interest in unsupervised learning of hierarchical generative models such as deep belief networks. Scaling such models to full-sized, high-dimensional images re...
Honglak Lee, Roger Grosse, Rajesh Ranganath, Andre...