Background: With the abundant information produced by microarray technology, various approaches have been proposed to infer transcriptional regulatory networks. However, few appro...
Grace S. Shieh, Chung-Ming Chen, Ching-Yun Yu, Jui...
Background: The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both indiv...
Curtis Huttenhower, Avi I. Flamholz, Jessica N. La...
Background: Inferring a gene regulatory network (GRN) from high throughput biological data is often an under-determined problem and is a challenging task due to the following reas...
Yuji Zhang, Jianhua Xuan, Benildo de los Reyes, Ro...
Background: Gene expression is governed by complex networks, and differences in expression patterns between distinct biological conditions may therefore be complex and multivariat...
In the standard formalization of supervised learning problems, a datum is represented as a vector of features without prior knowledge about relationships among features. However, ...