Sciweavers

54 search results - page 4 / 11
» Semi-supervised learning by locally linear embedding in kern...
Sort
View
ICML
2003
IEEE
15 years 10 months ago
The Pre-Image Problem in Kernel Methods
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applicatio...
James T. Kwok, Ivor W. Tsang
SSPR
2010
Springer
14 years 8 months ago
Information Theoretical Kernels for Generative Embeddings Based on Hidden Markov Models
Many approaches to learning classifiers for structured objects (e.g., shapes) use generative models in a Bayesian framework. However, state-of-the-art classifiers for vectorial d...
André F. T. Martins, Manuele Bicego, Vittor...
ICMLC
2005
Springer
15 years 3 months ago
Kernel-Based Metric Adaptation with Pairwise Constraints
Abstract. Many supervised and unsupervised learning algorithms depend on the choice of an appropriate distance metric. While metric learning for supervised learning tasks has a lon...
Hong Chang, Dit-Yan Yeung
CORR
2012
Springer
171views Education» more  CORR 2012»
13 years 5 months ago
Random Feature Maps for Dot Product Kernels
Approximating non-linear kernels using feature maps has gained a lot of interest in recent years due to applications in reducing training and testing times of SVM classifiers and...
Purushottam Kar, Harish Karnick
DIS
2007
Springer
15 years 3 months ago
A Hilbert Space Embedding for Distributions
We describe a technique for comparing distributions without the need for density estimation as an intermediate step. Our approach relies on mapping the distributions into a reprodu...
Alexander J. Smola, Arthur Gretton, Le Song, Bernh...