Category ranking is the task of ordering labels with respect to their relevance to an input instance. In this paper we describe and analyze several algorithms for online category r...
Adapting to rank address the the problem of insufficient domainspecific labeled training data in learning to rank. However, the initial study shows that adaptation is not always...
Keke Chen, Jing Bai, Srihari Reddy, Belle L. Tseng
Two mathematical and two computational theories from the field of human and animal learning are combined to produce a more general theory of adaptive behavior. The cornerstone of ...
J. J. McDowell, Paul L. Soto, Jesse Dallery, Saule...
As with any application of machine learning, web search ranking requires labeled data. The labels usually come in the form of relevance assessments made by editors. Click logs can...
This paper is concerned with rank aggregation, the task of combining the ranking results of individual rankers at meta-search. Previously, rank aggregation was performed mainly by...
Yu-Ting Liu, Tie-Yan Liu, Tao Qin, Zhiming Ma, Han...