Some of the most successful recent applications of reinforcement learning have used neural networks and the TD algorithm to learn evaluation functions. In this paper, we examine t...
Refinement operators for theories avoid the problems related to the myopia of many relational learning algorithms based on the operators that refine single clauses. However, the n...
Nicola Fanizzi, Stefano Ferilli, Nicola Di Mauro, ...
1 One of the major challenges of Applied Artificial Intelligence is to provide environments where high level human activities like learning, constructing theories or performing exp...
s In data mining, we emphasize the need for learning from huge, incomplete and imperfect data sets (Fayyad et al. 1996, Frawley et al. 1991, Piatetsky-Shapiro and Frawley, 1991). T...
This paper addresses the problem of active model selection for nonlinear dynamical systems. We propose a novel learning approach that selects the most informative subset of time-d...
Alberto Giovanni Busetto, Cheng Soon Ong, Joachim ...