The paper presents a new reinforcement learning mechanism for spiking neural networks. The algorithm is derived for networks of stochastic integrate-and-fire neurons, but it can ...
In many reinforcement learning applications, the set of possible actions can be partitioned by the programmer into subsets of similar actions. This paper presents a technique for ...
It is widely accepted that the use of more compact representations than lookup tables is crucial to scaling reinforcement learning (RL) algorithms to real-world problems. Unfortun...
Satinder P. Singh, Tommi Jaakkola, Michael I. Jord...
From a conceptual point of view, belief revision and learning are quite similar. Both methods change the belief state of an intelligent agent by processing incoming information. Ho...
Thomas Leopold, Gabriele Kern-Isberner, Gabriele P...
Recent advancements in model-based reinforcement learning have shown that the dynamics of many structured domains (e.g. DBNs) can be learned with tractable sample complexity, desp...
Thomas J. Walsh, Sergiu Goschin, Michael L. Littma...