Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems. However, their traini...
Abstract. Reinforcement learning (RL) is a widely used learning paradigm for adaptive agents. There exist several convergent and consistent RL algorithms which have been intensivel...
Lucian Busoniu, Damien Ernst, Bart De Schutter, Ro...
We consider the problem of incorporating end-user advice into reinforcement learning (RL). In our setting, the learner alternates between practicing, where learning is based on ac...
Kshitij Judah, Saikat Roy, Alan Fern, Thomas G. Di...
—Large scale production grids are a major case for autonomic computing. Following the classical definition of Kephart, an autonomic computing system should optimize its own beha...
Abstract-- In order to increase the transportation capability of elevator group systems in high-rise buildings without adding elevator installation space, double-deck elevator syst...
Jin Zhou, Lu Yu, Shingo Mabu, Kotaro Hirasawa, Jin...