Sciweavers

4629 search results - page 47 / 926
» Space Kernel Analysis
Sort
View
JMLR
2010
118views more  JMLR 2010»
14 years 6 months ago
Hilbert Space Embeddings and Metrics on Probability Measures
A Hilbert space embedding for probability measures has recently been proposed, with applications including dimensionality reduction, homogeneity testing, and independence testing....
Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fu...
JMLR
2010
132views more  JMLR 2010»
14 years 6 months ago
On the Impact of Kernel Approximation on Learning Accuracy
Kernel approximation is commonly used to scale kernel-based algorithms to applications containing as many as several million instances. This paper analyzes the effect of such appr...
Corinna Cortes, Mehryar Mohri, Ameet Talwalkar
ALT
2004
Springer
15 years 8 months ago
On Kernels, Margins, and Low-Dimensional Mappings
Kernel functions are typically viewed as providing an implicit mapping of points into a high-dimensional space, with the ability to gain much of the power of that space without inc...
Maria-Florina Balcan, Avrim Blum, Santosh Vempala
MCS
2010
Springer
15 years 6 months ago
Combining Multiple Kernels by Augmenting the Kernel Matrix
Abstract. In this paper we present a novel approach to combining multiple kernels where the kernels are computed from different information channels. In contrast to traditional me...
Fei Yan, Krystian Mikolajczyk, Josef Kittler, Muha...
ICML
2003
IEEE
16 years 21 days ago
Learning Metrics via Discriminant Kernels and Multidimensional Scaling: Toward Expected Euclidean Representation
Distance-based methods in machine learning and pattern recognition have to rely on a metric distance between points in the input space. Instead of specifying a metric a priori, we...
Zhihua Zhang