We analyze a class of estimators based on a convex relaxation for solving highdimensional matrix decomposition problems. The observations are the noisy realizations of the sum of ...
Alekh Agarwal, Sahand Negahban, Martin J. Wainwrig...
Most research on image decomposition, e.g. image segmentation and image parsing, has predominantly focused on the low-level visual clues within single image and neglected the cont...
Teng Li, Tao Mei, Shuicheng Yan, In-So Kweon, Chil...
In this work, we propose the use of sparse signal representation techniques to solve the problem of closed-loop spatial image prediction. The reconstruction of signal in the block...
Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-ran...
Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Pa...
We introduce the Tsallis divergence error measure in the context of pLSA matrix and tensor decompositions showing much improved performance in the presence of noise. The focus of ...