Benchmarking pattern recognition, machine learning and data mining methods commonly relies on real-world data sets. However, there are some disadvantages in using real-world data....
Janick V. Frasch, Aleksander Lodwich, Faisal Shafa...
Recent studies have shown that graph-based approaches are effective for semi-supervised learning. The key idea behind many graph-based approaches is to enforce the consistency bet...
Hidden Markov Models (HMMs) are important tools for modeling sequence data. However, they are restricted to discrete latent states, and are largely restricted to Gaussian and disc...
Le Song, Sajid M. Siddiqi, Geoffrey J. Gordon, Ale...
The problem of selecting a subset of relevant features in a potentially overwhelming quantity of data is classic and found in many branches of science. Examples in computer vision...
We present a Generalized Lotka-Volterra (GLV) based approach for modeling and simulation of supervised inductive learning, and construction of an efficient classification algorith...
Karen Hovsepian, Peter Anselmo, Subhasish Mazumdar