We propose a unified manifold learning framework for semi-supervised and unsupervised dimension reduction by employing a simple but effective linear regression function to map the ...
Feiping Nie, Dong Xu, Ivor Wai-Hung Tsang, Changsh...
PCA-SIFT is an extension to SIFT which aims to reduce SIFT’s high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminati...
Segmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing th...
Mert R. Sabuncu, B. T. Thomas Yeo, Koen Van Leem...
Domestic and real world robotics requires continuous learning of new skills and behaviors to interact with humans. Auto-supervised learning, a compromise between supervised and co...
In this paper, we present experiments on continuous time, continuous scale affective movie content recognition (emotion tracking). A major obstacle for emotion research has been t...