Sciweavers

321 search results - page 5 / 65
» Stacked Gaussian Process Learning
Sort
View
88
Voted
DSMML
2004
Springer
15 years 2 months ago
Can Gaussian Process Regression Be Made Robust Against Model Mismatch?
Learning curves for Gaussian process (GP) regression can be strongly affected by a mismatch between the ‘student’ model and the ‘teacher’ (true data generation process), e...
Peter Sollich
ICML
2009
IEEE
15 years 10 months ago
Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian proces...
Ryan Prescott Adams, Iain Murray, David J. C. MacK...
105
Voted
DSMML
2004
Springer
15 years 2 months ago
Understanding Gaussian Process Regression Using the Equivalent Kernel
The equivalent kernel [1] is a way of understanding how Gaussian process regression works for large sample sizes based on a continuum limit. In this paper we show how to approximat...
Peter Sollich, Christopher K. I. Williams
NIPS
2004
14 years 10 months ago
Learning Gaussian Process Kernels via Hierarchical Bayes
We present a novel method for learning with Gaussian process regression in a hierarchical Bayesian framework. In a first step, kernel matrices on a fixed set of input points are l...
Anton Schwaighofer, Volker Tresp, Kai Yu
ICML
2005
IEEE
15 years 10 months ago
Preference learning with Gaussian processes
In this paper, we propose a probabilistic kernel approach to preference learning based on Gaussian processes. A new likelihood function is proposed to capture the preference relat...
Wei Chu, Zoubin Ghahramani