Abstract--Kernel-based algorithms such as support vector machines have achieved considerable success in various problems in batch setting, where all of the training data is availab...
Jyrki Kivinen, Alex J. Smola, Robert C. Williamson
We propose a new scheme for enlarging generalized learning vector quantization (GLVQ) with weighting factors for the input dimensions. The factors allow an appropriate scaling of ...
This research concerns a noncooperative dynamic game with large number of oscillators. The states are interpreted as the phase angles for a collection of non-homogeneous oscillator...
Huibing Yin, Prashant G. Mehta, Sean P. Meyn, Uday...
Composite likelihood methods provide a wide spectrum of computationally efficient techniques for statistical tasks such as parameter estimation and model selection. In this paper,...
Arthur Asuncion, Qiang Liu, Alexander T. Ihler, Pa...
In this paper, we propose a second order optimization method to learn models where both the dimensionality of the parameter space and the number of training samples is high. In ou...