It is well-known that supervised learning techniques such as linear discriminant analysis (LDA) often suffer from the so called small sample size problem when apply to solve face ...
Jie Wang, Konstantinos N. Plataniotis, Anastasios ...
Classification is one of the most fundamental problems in machine learning, which aims to separate the data from different classes as far away as possible. A common way to get a g...
Bin Zhang, Fei Wang, Ta-Hsin Li, Wen Jun Yin, Jin ...
Modern approaches to speaker recognition (verification) operate in a space of “supervectors” created via concatenation of the mean vectors of a Gaussian mixture model (GMM) a...
Balaji Vasan Srinivasan, Dmitry N. Zotkin, Ramani ...
In this paper, we tackle learning in distributed systems and the fact that learning does not necessarily involve the participation of agents directly in the inductive process itse...
- Robot companions need to be able to constantly acquire knowledge about new objects for instance in order to detect them in the environment. This ability is necessary since it is ...