We propose a novel method, based on concepts from expander graphs, to sample communities in networks. We show that our sampling method, unlike previous techniques, produces subgra...
We present a continuous time Bayesian network reasoning and learning engine (CTBN-RLE). A continuous time Bayesian network (CTBN) provides a compact (factored) description of a co...
Christian R. Shelton, Yu Fan, William Lam, Joon Le...
We propose to solve the combinatorial problem of finding the highest scoring Bayesian network structure from data. This structure learning problem can be viewed as an inference pr...
Tommi Jaakkola, David Sontag, Amir Globerson, Mari...
Abstract. A major challenge in pervasive computing is to learn activity patterns, such as bathing and cleaning from sensor data. Typical sensor deployments generate sparse datasets...
The study of gene function is critical in various genomic and proteomic fields. Due to the availability of tremendous amounts of different types of protein data, integrating thes...
Xiaoyu Jiang, Naoki Nariai, Martin Steffen, Simon ...