Sciweavers

558 search results - page 1 / 112
» Structural Modelling with Sparse Kernels
Sort
View
ML
2002
ACM
163views Machine Learning» more  ML 2002»
14 years 9 months ago
Structural Modelling with Sparse Kernels
A widely acknowledged drawback of many statistical modelling techniques, commonly used in machine learning, is that the resulting model is extremely difficult to interpret. A numb...
Steve R. Gunn, Jaz S. Kandola
CVPR
2010
IEEE
14 years 7 months ago
Adaptive pose priors for pictorial structures
Pictorial structure (PS) models are extensively used for part-based recognition of scenes, people, animals and multi-part objects. To achieve tractability, the structure and param...
Benjamin Sapp, Chris Jordan, Ben Taskar
CVPR
2010
IEEE
15 years 6 months ago
Locally-Parametric Pictorial Structures
Pictorial structure (PS) models are extensively used for part-based recognition of scenes, people, animals and multi-part objects. To achieve tractability, the structure and param...
Benjamin Sapp, Chris Jordan, Ben Taskar
ICPP
2009
IEEE
15 years 4 months ago
Perfomance Models for Blocked Sparse Matrix-Vector Multiplication Kernels
—Sparse Matrix-Vector multiplication (SpMV) is a very challenging computational kernel, since its performance depends greatly on both the input matrix and the underlying architec...
Vasileios Karakasis, Georgios I. Goumas, Nectarios...
ICML
2004
IEEE
15 years 10 months ago
Kernel conditional random fields: representation and clique selection
Kernel conditional random fields (KCRFs) are introduced as a framework for discriminative modeling of graph-structured data. A representer theorem for conditional graphical models...
John D. Lafferty, Xiaojin Zhu, Yan Liu