Sciweavers

558 search results - page 16 / 112
» Structural Modelling with Sparse Kernels
Sort
View
ICML
2008
IEEE
15 years 10 months ago
Sparse multiscale gaussian process regression
Most existing sparse Gaussian process (g.p.) models seek computational advantages by basing their computations on a set of m basis functions that are the covariance function of th...
Bernhard Schölkopf, Christian Walder, Kwang I...
TASLP
2008
124views more  TASLP 2008»
14 years 9 months ago
Sparse Linear Regression With Structured Priors and Application to Denoising of Musical Audio
Abstract--We describe in this paper an audio denoising technique based on sparse linear regression with structured priors. The noisy signal is decomposed as a linear combination of...
Cédric Févotte, Bruno Torrésa...
JMLR
2012
13 years 9 days ago
Structured Sparse Canonical Correlation Analysis
In this paper, we propose to apply sparse canonical correlation analysis (sparse CCA) to an important genome-wide association study problem, eQTL mapping. Existing sparse CCA mode...
Xi Chen, Han Liu, Jaime G. Carbonell
HPCC
2005
Springer
15 years 3 months ago
Fast Sparse Matrix-Vector Multiplication by Exploiting Variable Block Structure
Abstract. We improve the performance of sparse matrix-vector multiplication (SpMV) on modern cache-based superscalar machines when the matrix structure consists of multiple, irregu...
Richard W. Vuduc, Hyun-Jin Moon
ICML
2005
IEEE
15 years 10 months ago
Healing the relevance vector machine through augmentation
The Relevance Vector Machine (RVM) is a sparse approximate Bayesian kernel method. It provides full predictive distributions for test cases. However, the predictive uncertainties ...
Carl Edward Rasmussen, Joaquin Quiñonero Ca...