Sciweavers

7 search results - page 1 / 2
» Structure Learning for Markov Logic Networks with Many Descr...
Sort
View
AAAI
2010
14 years 11 months ago
Structure Learning for Markov Logic Networks with Many Descriptive Attributes
Many machine learning applications that involve relational databases incorporate first-order logic and probability. Markov Logic Networks (MLNs) are a prominent statistical relati...
Hassan Khosravi, Oliver Schulte, Tong Man, Xiaoyua...
ICML
2007
IEEE
15 years 10 months ago
Bottom-up learning of Markov logic network structure
Markov logic networks (MLNs) are a statistical relational model that consists of weighted firstorder clauses and generalizes first-order logic and Markov networks. The current sta...
Lilyana Mihalkova, Raymond J. Mooney
ECAI
2008
Springer
14 years 11 months ago
Structure Learning of Markov Logic Networks through Iterated Local Search
Many real-world applications of AI require both probability and first-order logic to deal with uncertainty and structural complexity. Logical AI has focused mainly on handling com...
Marenglen Biba, Stefano Ferilli, Floriana Esposito
ICML
2009
IEEE
15 years 10 months ago
Learning Markov logic network structure via hypergraph lifting
Markov logic networks (MLNs) combine logic and probability by attaching weights to first-order clauses, and viewing these as templates for features of Markov networks. Learning ML...
Stanley Kok, Pedro Domingos
ICMLA
2009
14 years 7 months ago
Learning Parameters for Relational Probabilistic Models with Noisy-Or Combining Rule
Languages that combine predicate logic with probabilities are needed to succinctly represent knowledge in many real-world domains. We consider a formalism based on universally qua...
Sriraam Natarajan, Prasad Tadepalli, Gautam Kunapu...