In sequential decision-making problems formulated as Markov decision processes, state-value function approximation using domain features is a critical technique for scaling up the...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse,...
Recent work has demonstrated that using a carefully designed dictionary instead of a predefined one, can improve the sparsity in jointly representing a class of signals. This has m...
Kevin Rosenblum, Lihi Zelnik-Manor, Yonina C. Elda...
The success of tensor-based subspace learning depends heavily on reducing correlations along the column vectors of the mode-k flattened matrix. In this work, we study the problem ...
Shuicheng Yan, Dong Xu, Stephen Lin, Thomas S. Hua...
We use techniques from sample-complexity in machine learning to reduce problems of incentive-compatible mechanism design to standard algorithmic questions, for a broad class of re...
Maria-Florina Balcan, Avrim Blum, Jason D. Hartlin...