Sciweavers

576 search results - page 35 / 116
» Structured metric learning for high dimensional problems
Sort
View
UAI
2008
14 years 11 months ago
Feature Selection via Block-Regularized Regression
Identifying co-varying causal elements in very high dimensional feature space with internal structures, e.g., a space with as many as millions of linearly ordered features, as one...
Seyoung Kim, Eric P. Xing
81
Voted
ESANN
2004
14 years 11 months ago
Neural methods for non-standard data
Standard pattern recognition provides effective and noise-tolerant tools for machine learning tasks; however, most approaches only deal with real vectors of a finite and fixed dime...
Barbara Hammer, Brijnesh J. Jain
CORR
2012
Springer
198views Education» more  CORR 2012»
13 years 5 months ago
Lipschitz Parametrization of Probabilistic Graphical Models
We show that the log-likelihood of several probabilistic graphical models is Lipschitz continuous with respect to the ￿p-norm of the parameters. We discuss several implications ...
Jean Honorio
ICML
2006
IEEE
15 years 10 months ago
Discriminative cluster analysis
Clustering is one of the most widely used statistical tools for data analysis. Among all existing clustering techniques, k-means is a very popular method because of its ease of pr...
Fernando De la Torre, Takeo Kanade
SIGMOD
2001
ACM
184views Database» more  SIGMOD 2001»
15 years 9 months ago
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases
Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data....
Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehro...