Supervised learning is a classic data mining problem where one wishes to be be able to predict an output value associated with a particular input vector. We present a new twist on...
David R. Musicant, Janara M. Christensen, Jamie F....
The mobile robotics community has traditionally addressed motion planning and navigation in terms of steering decisions. However, selecting the best speed is also important – be...
The crucial issue in many classification applications is how to achieve the best possible classifier with a limited number of labeled data for training. Training data selection is ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimi...
Jean-Pascal Pfister, Taro Toyoizumi, David Barber,...
We describe an approach to extract attribute-value pairs from product descriptions. This allows us to represent products as sets of such attribute-value pairs to augment product d...
Katharina Probst, Rayid Ghani, Marko Krema, Andrew...