This paper presents a new learning approach for pattern classification applications involving imbalanced data sets. In this approach, a clustering technique is employed to resamp...
Giang Hoang Nguyen, Abdesselam Bouzerdoum, Son Lam...
In this paper, we present a regularization approach on discrete graph spaces for perceptual image segmentation via semisupervised learning. In this approach, first, a spectral cl...
For automatic semantic annotation of large-scale video database, the insufficiency of labeled training samples is a major obstacle. General semi-supervised learning algorithms can...
In semi-supervised learning, a number of labeled examples are usually required for training an initial weakly useful predictor which is in turn used for exploiting the unlabeled e...
Semi-supervised inductive learning concerns how to learn a decision rule from a data set containing both labeled and unlabeled data. Several boosting algorithms have been extended...