Background: Most existing algorithms for the inference of the structure of gene regulatory networks from gene expression data assume that the activity levels of transcription fact...
Background: Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interact...
Background: Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With ...
Ioannis A. Maraziotis, Andrei Dragomir, Dimitris T...
In the last decade, recurrent neural networks (RNNs) have attracted more efforts in inferring genetic regulatory networks (GRNs), using time series gene expression data from micro...
Rui Xu, Ganesh K. Venayagamoorthy, Donald C. Wunsc...
Background: Microarray data discretization is a basic preprocess for many algorithms of gene regulatory network inference. Some common discretization methods in informatics are us...
Yong Li, Lili Liu, Xi Bai, Hua Cai, Wei Ji, Dianji...