Sciweavers

93 search results - page 1 / 19
» Supervised probabilistic principal component analysis
Sort
View
KDD
2006
ACM
115views Data Mining» more  KDD 2006»
15 years 10 months ago
Supervised probabilistic principal component analysis
Principal component analysis (PCA) has been extensively applied in data mining, pattern recognition and information retrieval for unsupervised dimensionality reduction. When label...
Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Krieg...
95
Voted
NIPS
2008
14 years 11 months ago
Supervised Exponential Family Principal Component Analysis via Convex Optimization
Recently, supervised dimensionality reduction has been gaining attention, owing to the realization that data labels are often available and indicate important underlying structure...
Yuhong Guo
CVPR
2008
IEEE
15 years 11 months ago
Parameterized Kernel Principal Component Analysis: Theory and applications to supervised and unsupervised image alignment
Parameterized Appearance Models (PAMs) (e.g. eigentracking, active appearance models, morphable models) use Principal Component Analysis (PCA) to model the shape and appearance of...
Fernando De la Torre, Minh Hoai Nguyen
86
Voted
ICML
2007
IEEE
15 years 10 months ago
Dimensionality reduction and generalization
In this paper we investigate the regularization property of Kernel Principal Component Analysis (KPCA), by studying its application as a preprocessing step to supervised learning ...
Sofia Mosci, Lorenzo Rosasco, Alessandro Verri