With the growing adoption of virtualized datacenters and cloud hosting services, the allocation and sizing of resources such as CPU, memory, and I/O bandwidth for virtual machines...
Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zh...
This paper develops bounds on out-of-sample error rates for support vector machines (SVMs). The bounds are based on the numbers of support vectors in the SVMs rather than on VC di...
A multitask learning framework is developed for discriminative classification and regression where multiple large-margin linear classifiers are estimated for different predictio...
Random Forests were introduced by Breiman for feature (variable) selection and improved predictions for decision tree models. The resulting model is often superior to AdaBoost and ...
Long Han, Mark J. Embrechts, Boleslaw K. Szymanski...
This paper is based on a new way for determining the regularization trade-off in least squares support vector machines (LS-SVMs) via a mechanism of additive regularization which ha...
Kristiaan Pelckmans, Johan A. K. Suykens, Bart De ...