We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which...
This paper presents a novel discriminative learning technique for label sequences based on a combination of the two most successful learning algorithms, Support Vector Machines an...
Yasemin Altun, Ioannis Tsochantaridis, Thomas Hofm...
Like many purely data-driven machine learning methods, Support Vector Machine (SVM) classifiers are learned exclusively from the evidence presented in the training dataset; thus ...
—Support vector (SV) machines are linear classifiers that use the maximum margin hyperplane in a feature space defined by a kernel function. Until recently, the only bounds on th...
Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Ro...
Although version space support vector machines (VSSVMs) are a successful approach to reliable classification [6], they are restricted to separable data. This paper proposes gener...
Evgueni N. Smirnov, Ida G. Sprinkhuizen-Kuyper, Ni...