Background: The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating v...
Maureen A. Sartor, Craig R. Tomlinson, Scott C. We...
Background: Non-negative matrix factorisation (NMF), a machine learning algorithm, has been applied to the analysis of microarray data. A key feature of NMF is the ability to iden...
The recent development of microarray gene expression techniques have made it possible to offer phenotype classification of many diseases. However, in gene expression data analysis...
Background: Recent biological discoveries have shown that clustering large datasets is essential for better understanding biology in many areas. Spectral clustering in particular ...
Habil Zare, Parisa Shooshtari, Arvind Gupta, Ryan ...
Background: Feature gene extraction is a fundamental issue in microarray-based biomarker discovery. It is normally treated as an optimization problem of finding the best predictiv...
Chi Kin Chow, Hai Long Zhu, Jessica Lacy, Winston ...