Sciweavers

267 search results - page 30 / 54
» The Dynamics of Multi-Agent Reinforcement Learning
Sort
View
AI
1998
Springer
14 years 9 months ago
Model-Based Average Reward Reinforcement Learning
Reinforcement Learning (RL) is the study of programs that improve their performance by receiving rewards and punishments from the environment. Most RL methods optimize the discoun...
Prasad Tadepalli, DoKyeong Ok
NECO
2007
150views more  NECO 2007»
14 years 9 months ago
Reinforcement Learning, Spike-Time-Dependent Plasticity, and the BCM Rule
Learning agents, whether natural or artificial, must update their internal parameters in order to improve their behavior over time. In reinforcement learning, this plasticity is ...
Dorit Baras, Ron Meir
NIPS
2008
14 years 11 months ago
Optimization on a Budget: A Reinforcement Learning Approach
Many popular optimization algorithms, like the Levenberg-Marquardt algorithm (LMA), use heuristic-based "controllers" that modulate the behavior of the optimizer during ...
Paul Ruvolo, Ian R. Fasel, Javier R. Movellan
ATAL
2007
Springer
15 years 3 months ago
Model-based function approximation in reinforcement learning
Reinforcement learning promises a generic method for adapting agents to arbitrary tasks in arbitrary stochastic environments, but applying it to new real-world problems remains di...
Nicholas K. Jong, Peter Stone
ML
1998
ACM
101views Machine Learning» more  ML 1998»
14 years 9 months ago
Elevator Group Control Using Multiple Reinforcement Learning Agents
Recent algorithmic and theoretical advances in reinforcement learning (RL) have attracted widespread interest. RL algorithmshave appeared that approximatedynamic programming on an ...
Robert H. Crites, Andrew G. Barto