We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integ...
Matthew J. Beal, Zoubin Ghahramani, Carl Edward Ra...
A new language model for speech recognition inspired by linguistic analysis is presented. The model develops hidden hierarchical structure incrementally and uses it to extract mea...
In applying Hidden Markov Models to the analysis of massive data streams, it is often necessary to use an artificially reduced set of states; this is due in large part to the fac...
Pedro F. Felzenszwalb, Daniel P. Huttenlocher, Jon...
We develop a hierarchical, nonparametric statistical model for wavelet representations of natural images. Extending previous work on Gaussian scale mixtures, wavelet coefficients ...
Jyri J. Kivinen, Erik B. Sudderth, Michael I. Jord...