We present a method for learning a human understandable, executable model of an agent's behavior using observations of its interaction with the environment. By executable we ...
Andrew Guillory, Hai Nguyen, Tucker R. Balch, Char...
In this paper, we introduce the semantic network model (SNM), a generalization of the hidden Markov model (HMM) that uses factorization of state transition probabilities to reduce...
Stjepan Rajko, Gang Qian, Todd Ingalls, Jodi James
This paper focuses on audio-visual (using facial expression, shoulder and audio cues) classification of spontaneous affect, utilising generative models for classification (i) in t...
We consider Gaussian multiresolution (MR) models in which coarser, hidden variables serve to capture statistical dependencies among the finest scale variables. Tree-structured MR ...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...
A computational model is presented for the detection of coherent motion based on template matching and hidden Markov models. The premise of this approach is that the growth in dete...