This paper investigates a new learning model in which the input data is corrupted with noise. We present a general statistical framework to tackle this problem. Based on the stati...
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail we are given a set ...
Background: Classification and variable selection play an important role in knowledge discovery in highdimensional data. Although Support Vector Machine (SVM) algorithms are among...
Natalia Becker, Grischa Toedt, Peter Lichter, Axel...
In a recent paper, Friedman, Geiger, and Goldszmidt [8] introduced a classifier based on Bayesian networks, called Tree Augmented Naive Bayes (TAN), that outperforms naive Bayes a...
A clustering framework within the sparse modeling and dictionary learning setting is introduced in this work. Instead of searching for the set of centroid that best fit the data, ...
Pablo Sprechmann, Ignacio Ramirez, Guillermo Sapir...