Spectral clustering is useful for a wide-ranging set of applications in areas such as biological data analysis, image processing and data mining. However, the computational and/or...
Ling Huang, Donghui Yan, Michael I. Jordan, Nina T...
A novel center-based clustering algorithm is proposed in this paper. We first formulate clustering as an NP-hard linear integer program and we then use linear programming and the ...
Metric learning algorithms can provide useful distance functions for a variety of domains, and recent work has shown good accuracy for problems where the learner can access all di...
Prateek Jain, Brian Kulis, Inderjit S. Dhillon, Kr...
By attempting to simultaneously partition both the rows (examples) and columns (features) of a data matrix, Co-clustering algorithms often demonstrate surprisingly impressive perf...
Vikas Sindhwani, Jianying Hu, Aleksandra Mojsilovi...
In this paper we investigate multi-task learning in the context of Gaussian Processes (GP). We propose a model that learns a shared covariance function on input-dependent features...
Edwin V. Bonilla, Kian Ming Chai, Christopher K. I...